Queue Length Based Internet Congestion Control

Marios Lestas Member IEEE, Andreas Pitsillides, Senior Member IEEE,
Petros loannou, Fellow IEEE, George Hadjipollas Student Member IEEE

Abstract—1In this paper we present new queue length based
Internet congestion control protocol which is shown through
simulations to work effectively. The control objective is to regulate
the queue size at each link so that it tracks a reference queue
size chosen by the designer. To achieve the latter, the protocol
implements at each link a certainty equivalent proportional
controller which utilizes estimates of the effective number of users
utilizing the link. These estimates are generated online using a
novel estimation algorithm which is based on online parameter
identification techniques. The protocol utilizes an explicit multi-
bit feedback scheme and does not require maintenance of per
flow states within the network. Extensive simulations indicate that
the protocol is able to guide the network to a stable equilibrium
which is characterized by max-min fairness, high utilization,
queue sizes close to the reference value and no observable packet
drops. In addition, it is found to be scalable with respect to
changing bandwidths, delays and number of users utilizing the
network. The protocol also exhibits nice transient properties such
as smooth responses with no oscillations and fast convergence.

I. INTRODUCTION

TCP congestion control has served the Internet remarkably
well as this has evolved from a small scale network to the
largest artificially deployed system. However, TCP is known
to exhibit undesirable properties such as low utilization in the
presence of large bandwidth delay products and random packet
losses ([1], [2]). It has also been shown analytically that as
bandwidth delay products increase TCP becomes oscillatory
and prone to instability ([3]).

These observations have triggered intense research activ-
ity on Internet Congestion Control which has led to TCP
enhancements and new congestion control protocols. Due to
the fundamental performance limitations of protocols which
employ binary and implicit feedback, in the last few years
there has been renewed interest in the design of network
assisted congestion control protocols which employ explicit,
multi-bit feedback. Three of the most promising proposals
(XCP [4], RCP [5] and ACP [6]) share a common objective:
to match at each link the input data rate to the link capacity
and at the same time ensure zero queue sizes. In this paper, we
consider a different design objective: to regulate at each link
the queue size so that it tracks a reference queue size chosen
by the designer. This approach pushes the system to its limits
as it forces the network to achieve full network utilization and

This work was partly funded by the RPF VIDEO and the UCY ADVIDEO

projects .

Marios Lestas, Andreas Pitsillides and George Hadjipol-
las are with the Computer Science Department, University
of Cyprus, Nicosia, Cyprus, lestas@cs.ucy.ac.cy,

andreas.pitsillides@ucy.ac.cy,
hpollas@ucy.ac.cy

Petros Ioannou is with the Electrical Engineering Department, University
of Southern California, Los Angeles, California, icannou@usc.edu

takes advantage of all network resources including queues. It
also reduces the number of states that need to be maintained
at each link as the integral action is offered for free by the
queueing dynamics. Despite many proposals for queue length
based congestion control protocols in the context of the ABR
service in ATM networks ([7], [8]) , in Internet congestion
control the only notable attempt is reported in [9]. The scheme
computes the feedback signal sent to the TCP users by using a
combination of a logarithmic function and an additive increase
and multiplicative decrease policy. The problem with this
approach is that it is based on ad-hoc nonlinear techniques
which may cause stability problems as the delays and number
of users within the network increase.

In this paper, we present a new, queue length based In-
ternet congestion control protocol which is shown through
simulations to work effectively. The proposed protocol utilizes
an explicit multi-bit feedback scheme similar to the one in
[4] and does not require maintenance of per flow states
within the network. It implements at each link a certainty
equivalent, proportional controller which utilizes estimates of
the effective number of users utilizing the link. These estimates
are generated online using a novel estimation algorithm which
is presented in detail in [10] and is based on online parameter
identification techniques. Extensive simulations indicate that
the protocol is able to guide the network to a stable equilibrium
which is characterized by max-min fairness, high utilization,
queue sizes close to the chosen reference value and no observ-
able packet drops. In addition, it is found to be scalable with
respect to changing bandwidths, delays and number of users
utilizing the network. The protocol also exhibits nice transient
properties such as smooth responses with no oscillations and
fast convergence. In section II we present the protocol in
detail and in section III we evaluate its performance through
simulations. Finally in section IV we offer our conclusions
and future research directions.

II. THE PROTOCOL

In this section, we describe the main features of the protocol.
Some of the functionalities of the protocol are inspired from
the work in [4].

A. The packet header

The packet carries a congestion header which consists of 3
fields as shown in Fig. 1 . The H _rtt field carries the current
round trip time estimate of the source which has generated the
packet. The field is set by the user and is never modified in
transit. It is read by each router and is used to calculate the
control period. The H _feedback field carries the sending rate
which the network requests from the user which has generated

H_rtt (sender’ s rtt estimate)

H_feedback (desired sending rate)

H_congestion (congestion bit)

Fig. 1. Congestion header

the packet. This field is initiated with the user’s desired rate
and is then updated by each link the packet encounters in its
path. At each link, the value in the field is compared with the
desired sending rate value and the smallest value is stored in
the H_feedback field. In this way, a packet as it traverses from
source to destination it accumulates the minimum sending rate
it encounters in its path. The H _congestion bit is a single bit
which is initialized by the user with a zero value and is set by
a link if the input data rate at that link is more that 95% of
the link capacity. In this way, the link informs its users that it
is on the verge of becoming congested so that they can apply
a delayed increase policy and avoid excessive instantaneous
queue sizes and packet losses.

B. The sender

As in TCP, each link maintains a congestion window cwnd
which represents the number of outstanding packets and a
smoothed estimate of the current round trip time srtt which
is calculated using an exponentially weighted moving average
filter.

The initial congestion window value is set to 1 and is never
allowed to become less than this value because this would
cause the source to stop sending data. On packet departure,
the H_feedback field in the packet header is initialized with
the desired sending rate of the application and the H _rtt field
stores the current estimate of the round trip time. If the source
does not have a valid estimate of the round trip time the H rtt
field is set to zero.

The congestion window is updated every time the sender
receives an acknowledgement. When a new acknowledgement
is received, the value in the H_feedback field, which repre-
sents the sending rate requested by the network in bytes per
second, is read and is used to calculate the desired congestion
window as follows:

H _feedback x srtt
size

(1

where size is the packet size in bytes. We multiply with the
srtt to transform the rate information into window information
and we divide by the packet size to change the units from
bytes to packets. The desired window is the new congestion
window requested by the network. We do not immediately set
the cwnd equal to the desired congestion window because this
abrupt change may lead to bursty traffic. Instead we choose to
gradually make this change by means of a first order filter.
The smoothing gain of this filter depends on the state of
the H _congestion bit in the acknowledgement received. If
this is equal to 1, which indicates congestion in the source

desired_window =

destination path, we apply a less aggressive increase policy.
The congestion window is updated according to the following
equation:

1
cwnd = cwnd + O7(desired,un'ndow —cwnd) (2)
wnd

if desired_window > cwnd and H _congestion = 1 and

cwnd = Pr[cwnd +

(desired_window — cwnd)] (3)
cun

otherwise. The projection operator Pr[.] is defined below
and guarantees that the congestion window does not become
less than 1.

PT[l‘]:{x ifx>1 (4)

1 otherwise

C. The receiver

The receiver is identical to the XCP receiver. When it
receives a packet it generates an acknowledgement in which
it copies the congestion header of the packet.

D. The router

The router maintains at each output queue a value p, which
represents the sending rate it desires from all users traversing
the link. The desired rate is updated every time a control timer
expires. The timer is set to to expire every average round trip
time d. The average round trip time is initiated with a value of
0.05 and is also updated every time the control timer expires.
To calculate the average round trip time, the router records
upon packet arrival, the value stored in the H,; field of the
packet header and divides the sum of the values recorded in
one control period with the period.

In order to calculate the desired sending rate, the router
requires two more variables at each output queue: the persis-
tent queue size ¢ and the rate of incoming packets y. The
persistent queue size ¢ is computed by taking the minimum
queue seen by the arriving packets during the last propagation
delay. The propagation delay is unknown at the router and is
thus estimated by subtracting the local queueing delay from
the average RTT. The local queueing delay is calculated by
dividing the instantaneous queue size with the link capacity.

The rate of incoming packets y, is equal to the number
of packets entering the queue in one control period divided
by the control period. To calculate the number of received
packets, the router maintains a variable which is incremented
with the packet size every time the queue receives a packet.
When the control timer expires, the link calculates y by adding
the received number of packets and then dividing with the
control period. It then resets the received number of bytes.

The above variables are used to calculate the desired rate p
every control period. At each link, the objective is to regulate
the queue size g so that it tracks a reference queue size ¢
chosen by the designer. To achieve the latter, we calculate
the desired sending rate p using a modified version of the
algorithm proposed in ([11]). The algorithm is as follows:

p(k) = Pr[C _ d(k)is'((lz?) - 2q?"6f)] -

where N (k) represents an estimate of the number of users
utilizing the link which is calculated online. The projection
operator is defined below:

1 ifz<l1
Prz] = {C ifz>C (6)
x otherwise

It guarantees that the desired sending rate is greater than 1
and smaller than the link capacity. The lower bound is imposed
since we know priori that the protocol will send a packet, only
if it has at least one byte to send. Values greater than the link
capacity are not feasible. The control algorithm (5) basically
applies proportional action. The delay term d(k) is added to
maintain stability in the presence of delays. A novel part of
the proposed scheme is that at each link, the estimate of the
number of users utilizing the link N (k) is generated online
using an algorithm which is presented in detail in [10] and
is based on online parameter identifiaction techniques. The
estimation algorithm is as follows:

N(k+1) = Pr[N(k)+6N(k], N@©)=10 (7)

where

s TE®+ W = N(k)p(k — Dp(k — 1) .
(k) = 1+ p?(k—1) ®

The projection operator Pr[.] is defined in (4). The projec-
tion operator guarantees that the number of flows traversing
the link is never allowed to be less than 1. Values less than
one are obviously not feasible. v is a design parameter which
affects the convergence properties of the algorithm. We choose
~ to be equal to 0.1. Note that the initial value of the estimated
number of flows N is equal to 10. We choose this value to
ensure a relatively conservative policy when initially updating
the desired sending rate.

The desired sending rate calculated at each link is used to
update the H_feedback field in the packet header. On packet
departure, the router compares the desired sending rate with
the value stored in the H _feedback field and updates the field
with the minimum value. In this way, a packet as it traverses
from source to destination it accumulates the minimum of the
desired sending rates it encounters in its path.

The last function performed by the router at each link
is to notify the users traversing the link of the presence of
congestion so that they can apply a delayed increase policy.
On packet departure the link checks whether the input data rate
is larger than 0.95 the link capacity. In this case it deduces
that the link is congested and sets the H _congestion bit in
the packet header.

III. PERFORMANCE EVALUATION

Our objective has been to develop a window based protocol
which does not require maintenance of per flow states within

the network and satisfies all the design objectives of congestion
control protocols. In this section, we demonstrate through
simulations that the proposed protocol satisfies its design
objectives to a very good extent.

A. Scalability

It is important for congestion control protocols to be able
to maintain their properties as network characteristics change.
We thus investigate the scalability of the proposed protocol
with respect to changing link bandwidths, propagation delays
and number of users utilizing the network.

Source 50

Sink 50

Fig. 2. Single bottleneck link topology used to investigate the scalability of
the protocol with respect to changing link capacities, delays and number of
users.

We conduct our study by considering the single bottleneck
link network shown in Fig. 2. In the basic setup, 50 users
share the bottleneck link through access links. The bandwidth
of all links in the network is set equal to 155Mb/sec and the
propagation delay is set equal to 20msec. The access links
have different propagation delays. The propagation delay of
the access link of the first user is set equal to the same value
as that of the bottleneck link and the propagation delays of the
access links of the rest of the users differ by increments of
0.5msec. In this way we create an asynchronous network. As
mentioned above, the purpose of this study is to investigate
the scalability of the protocol with respect to changing band-
widths, delays and number of users utilizing the network. We
consider bandwidths in the range 10Mbits/s-1Gbit/sec, delays
in the range 10msec-1sec and number of users in the range
1-1000. The performance metrics that we use in this study are
the equilibrium utilization and the equilibrium queue size at
the bottleneck link. The equilibrium values are calculated by
averaging the values recorded after the system has converged
to its equilibrium state. We do not report packet drops, as in
all simulations we do not observe any. In addition, we do not
show fairness plots, as in all simulations the network users are
assigned the same sending rate at equilibrium, which implies
that max-min fairness is achieved in all cases. The dynamics
of the protocol and its ability to perform well in more complex
network topologies are investigated in separate studies later in
this section.

In our simulations, we consider persistent FTP sources. The
packet size is equal to 1000 bytes and the buffer size of all
links is set equal to the bandwidth delay product. The reference
queue size ¢r.y is chosen to be equal to 100 packets. The
simulation time is not constant. It varies depending on the
round trip propagation delay. We simulate for a sufficiently

long time to ensure that the system has reached an equilibrium
state. It is highly unlikely that in an actual network the
network users will enter the network simultaneously. So, in
all scenarios, the users enter the network with an average rate
of one user per round trip time.

Effect of Capacity: We first evaluate the performance of
the proposed protocol as we change the link bandwidths. We
fix the number of users to 50, we fix the propagation delays
to 20msec and we consider link bandwidths in the range
10Mbits/s-1Gbit/s. Plots of the bottleneck utilization and the
average queue size versus the link capacity are shown in Fig.
3.

[,

o
©

Bottleneck Utilization
o o
» (=2}

I
N

o

1000

o

200 400 600 800
Bandwidth (Mbits/sec)

(a) Utilization vs Capacity

__ 150
[%2)
7]
<
[5]
©
S
© 100 —
N -0
5
[}
=1
Q)
=3
o
g 50
3
S
3
o
w
0O 200 400 600 800 1000

Bandwidth (Mbits/sec)

(b) Average Queue Size vs Capacity

Fig. 3. The protocol achieves full network utilization and experiences no
drops as the capacity increases. The equilibrium queue size is always close
to 100 which is the reference value.

We observe that the proposed scales well with increasing
bandwidths. The protocol achieves full network utilization
(100%) at all bandwidths. Moreover, the queue size always
converges to an equilibrium value which is close to 100 as
required.

Effect of Delays: We then investigate the performance
of the protocol as we change the propagation delay of the
links. Any change in the link propagation delay causes a
corresponding change in the round trip propagation delay of
all source destination paths. We fix the link bandwidths to
155Mbits/s, we fix the number of users to 50 and we consider
round-trip propagation delays in the range 10ms-1sec. It must
be noted that each user of the network has different round
trip propagation delay, since the propagation delay of each
access link is different. So, when we refer to the round trip
propagation delay of a particular simulation we refer to the
minimum round trip propagation delay among the network
users. Plots of the bottleneck utilization and the average queue
size versus the round trip propagation delays are shown in Fig

[N

o
)

Bottleneck Utilization
o o
i o

o
N}

G0 200 400 600 800 1000

Round Trip Propagation Delay (msec)

(a) Utilization vs Delay

140

120

100 |0s-0—o— —— T
80
60
40

20

Equilibrium Queue Size (Packets)

0
0 200 400 600 800 1000

Round Trip Propagation Delay (msec)

(b) Average Queue Size vs Delay

Fig. 4. The protocol achieves full network utilization and experiences no
drops as the round trip propagation delay increases. The equilibrium queue
size is close to 100 at all delays as required.

The results are similar to the results obtained when inves-
tigating the effect of changing capacities. Fig. 4 (a) demon-
strates that the protocol achieves full network utilization at all
delays and that the queue size at equilibrium is close to 100
as required.

Effect of the Number of Users We finally investigate
the performance of the proposed protocol as we increase the
number of users utilizing the single bottleneck link network in
Fig. 2. We consider different number of users in the range 1-
1000. Plots of the bottleneck utilization and the average queue
size versus the number of users are shown in Fig. 5.

We observe that the protocol achieves full network utiliza-
tion in all cases. However, we also observe that the equilibrium
queue size starts deviating from the reference queue size as
the number of users increases. The reason for this is that as
the number of users increases, the queue size experiences
oscillations of increasing magnitude with a corresponding
shifting of the mean value towards a higher value. However,
this increase in the value of the queue size at equilibrium is
relatively small and no packet losses are observed.

B. The Dynamics of the protocol

To fully characterize the performance of the proposed pro-
tocol, apart from the properties of the system at equilibrium,
we need to investigate its transient properties. The protocol
must generate smooth responses which are well damped and
converge fast to the desired equilibrium state. To conduct our
study we consider the following dynamic scenario. 30 users
originally utilize the single bottleneck link network shown in
Fig. 2. At 30 seconds 20 of theses users stop sending data

[N

o
©

Bottleneck Utilization
=} =}
S [=2]

o
N

o

o

200 400 600 800
Number of Users

1000

(a) Utilization vs Number of Users

140
120 .‘-‘_/_./,/‘»
1008 ,

80
60

40

20

Equilibrium Queue Size (Packets)

0 200 400 600 800

Number of Users

1000

(b) Average Queue Size vs Number of Users

Fig. 5. The protocol achieves full network utilization and experiences no
packet drops in all cases. However, the equilibrium queue size increases with
increasing number of users.

simultaneously. So the number of users utilizing the network
is reduced to 10. At 45 seconds, however, 40 additional users
enter the network thus causing the number of users to increase
to 50.

200

=—cwnd 1
=—cwnd 30
= cwnd 40

150

Cwnd
5
o

50

0 20 40 60 80
Time (sec)

Fig. 6. Time response of the congestion window of three users. User 1
utilizes the network throughout the simulation, user 30 stops sending data at
30 seconds and user 40 enters the network at 45 seconds. We observe smooth
and fast responses with no oscillations.

In Fig. 6 we present the time responses of the congestion
window of a representative number of users. User 1 utilizes
the network throughout the simulation, user 30 stops sending
data at 30 seconds and user 40 enters the network at 45
seconds. The transient behavior of the other users is very
similar to the ones shown in Fig 6. We observe that the
protocol achieves smooth responses which converge fast to
the desired equilibrium with no oscillations. However, in some
cases, they experience overshoots. When user 1 starts sending
data it converges fast to its max-min fair allocation. Since
the users gradually enter the network, the max-min allocation
gradually decreases. This is why the congestion window of

user 1 experiences a large overshoot before settling down to
its equilibrium value. Note, however, that once the desired
sending rate calculated at the bottleneck link has settled down
to an equilibrium value, a new user, such as user 30, converges
fast to the max-min allocation value with no overshoots. When
the 20 users suddenly stop sending data at 30 seconds the
flow of data through the bottleneck link drops thus causing an
instantaneous underutilization of the link. The link identifies
this drop in the input data rate and reacts by increasing
its desired sending rate. This causes user 1 to increase its
congestion window. The time response in Fig 6 indicates fast
convergence to the new equilibrium value with no oscillations.
However, the response does experience a small overshoot be-
fore settling down to its equilibrium value. When 40 new users
enter the network at 45 seconds, the max-min fair sending
rate decreases. The controller at the bottleneck link iteratively
calculates this rate and communicates this information to
the end users. This causes user 1 to decrease its congestion
window and user 40 which has just entered the network to
gradually increase its congestion window to the equilibrium
value. We observe from Fig. 6 that user 1 converges fast to the
new equilibrium value with no undershoots or oscillations. We
also observe that the time response of the congestion window
of user 40 experiences a small overshoot before settling down
to its equilibrium value. This is due to the fact that the user sets
its sending rate equal to the desired sending rate calculated at
the bottleneck link while the latter is still decreasing.

The next thing we investigate is the transient behavior of
the utilization and the queue size at the bottleneck link. In Fig.
7 we show the time responses of the utilization and the queue
size at the bottleneck link.

Bottleneck Utilization

0 10 20 30 40 50 60 70 80
Time (sec)

(a) Utilization vs Time

Queue Size (Packets)
8

100 |- jp e

0 10 20 30 40 50 60 70 80
Time (sec)

(b) Queue Size vs Time

Fig. 7. Time response of the instantaneous utilization and the queue size at
the bottleneck link. Utilization converges fast to a value which is close to 1.
The queue size experiences instantaneous increases when new users enter the
network but at equilibrium the queue size is equal to the reference value.

We observe that the link utilization converges fast to a value
which is close to 1. When the 20 users leave the network, the
flow of data suddenly decreases thus causing an instantaneous
decrease in the utilization. However, the system reacts quickly
by increasing the sending rate of the remaining users, thus
achieving almost full utilization in a very short period of time.

The time response of the queue size indicates that the latter
converges to a value which is close to 100. This is the main
objective of the congestion control protocol. However, in the
transient periods during which new users enter or leave the
network, the queue size experiences an instantaneous increase.
It might seem strange that we observe increasing queue sizes
when users leave the network. This is caused by the fact
that the remaining users, while they increase their sending
rate to take up the slack created, they experience overshoots.
However, careful choice of the control parameters at the links
and the delayed increase policy that we apply at the sources
ensure that these overshoots do not exceed the buffer size and
thus do not lead to packet drops.

C. A multi-link example

Until now we have evaluated the performance of the pro-
posed protocol in a single bottleneck link network topology.
Our objective in this section is to investigate how the protocol
performs in a more complex network topology. We consider
the parking lot topology shown in Fig. 8.

20 users /

Link 1 Link 2 Link 3 Link 4
Router 1 1?_55M b/s Router 2 155Mb/s Router 3 155Mb/s Router 4 80Mb/s
ms

gt) s 71

20 users & 20 users x 20 usefsx 20 users / \\‘
/ /
/

Fig. 8. A parking lot network topology

The network consists of 8 links which are connected in
series. All links have a bandwidth of 155Mbits/sec except link
4 which has a bandwidth of 80Mbits/sec. The propagation
delay of all links is set equal to 15msec. 20 users utilize the
network by traversing all 8 links. Moreover, each link in the
network is utilized by an additional 20 users which have single
hop paths as shown in Fig. 8. In this way, all links in the
network are bottleneck links and link 4 is the single bottleneck
link for the 20 users which traverse the whole network. In fig.
9, we show on separate graphs the equilibrium utilization and
the equilibrium queue size recorded at each link.

Since all links in the network are bottleneck links for some
flows, we do expect them to be fully utilized. Indeed, we
observe that the proposed protocol achieves full utilization at
all links. In addition, at all links the equilibrium queue size is
equal to the reference queue size as required.

IV. CONCLUSIONS

In this paper we present new Internet congestion control
protocol whose objective is to regulate the queue size at
each link so that it tracks a reference queue size chosen by
the designer. We demonstrate through simulations that the
protocol meets its design objectives to a very good extent. Our

Link Utilization
o o o
> o ™ =

o
[N

RS

2 3 4 5 6 7 8
Link ID

(a) Utilization at each link

i
N
o

=
o
p
p
p
p
p
p

@
o

N
o

n
o

Equilibrium Queue Size (Packets)
(2]
o

o

2 3 5 6 7 8

4
Link ID

(b) Queue at each link

Fig. 9. The protocol achieves full utilization at all links and experiences
no packet drops. In addition, the equilibrium queue size is equal to 100 as
required.

next objective is to further evaluate its performance in more
complex topologies and in the presence of realistic weblike
traffic. We also aim at establishing its properties analytically
in networks of arbitrary topology.

REFERENCES

[1] T. V. Lakshman and U. Madhow. The performance of TCP/IP for net-
works with high bandwidth-delay products and random loss. IEEE/ACM
Transactions on Networking, 5(3):336-350, June 1997.

[2] S. Floyd and V. Jacobson. Connections with multiple congested gate-
ways in packet-switched networks. Comput. Commun. Rev., 21(5):30-
47, August 1991.

[3] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J.C. Doyle. Dynamics
of TCP/RED and a scalable control. In Proc. IEEE INFOCOM,
volume 1, pages 23-27, June 2002.

[4] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control
for high-bandwidth-delay products. In Proc. ACM SIGCOMM, August
2002.

[5] N. Dokkipati, M. Kobayashi, Rui Zhang-Shen, and Nick McKeown.
Processor sharing flows in the internet. In Proc. Thirteenth Intenrational
Workshop on Quality of Service 2005,, June 2005.

[6] M. Lestas, A. Pitsillides, P. Ioannou, and G. Hadjipollas. Adaptive
congestion protocol: A new congestion control protocol with learning
capability. Computer Networks. Submitted for publication.

[71 L. Benmohamed and S. M. Meerkov. Feedback control of congestion
in packet switching networks: The case of a single congested node.
IEEE/ACM Transactions on Networking, 1(6):693-708, December 1993.

[8] S. Chong, R. Nagarajan, and Y. Wang. Designing stable ABR flow

control with rate feedback and open loop control:first-order control case.

Performance Evaluation, 34(4):189-206, December 1998.

L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. Explicit window

adaptation: A method to enhance TCP performance. In Proc. INFO-

COM, pages 242-251, 1998.

M. Lestas, A. Pitsillides, P. Ioannou, and G. Hadjipollas. A new

estimation scheme for the effective number of users in internet con-

gestion control. IEEE/ACM Transactions on Networking. Submitted for
publication.

G. Veciana C. F. Su and J. Walrand. Explicit rate flow control for ABR

services in ATM networks. [EEE/ACM Transactions on Networking,

8(3):350-361, June 2000.

[9

—

[10]

(11]

